Friday, August 21, 2020

The History of the Common Bean

The History of the Common Bean The training history of the basic bean (Phaseolus vulgaris L.) is crucial to understanding the inceptions of farming. Beans are one of the three sisters of customary horticultural editing strategies revealed by European pioneers in North America: Native Americans admirably intercropped maize, squash, and beans, giving an invigorating and ecologically stable method of benefiting from their different characteristics.â Beans are one of the most significant household vegetables on the planet, in view of their high groupings of protein, fiber, and complex sugars. P. vulgaris is by a wide margin the most monetarily significant tamed types of the class Phaseolus. Train Properties P. vulgaris beans arrive in a tremendous assortment of shapes, sizes, and hues, from pinto to pink to dark to white. Regardless of this decent variety, wild and household beans have a place with similar animal types, as do the entirety of the bright assortments (landraces) of beans, which are accepted to be the consequence of a blend of populace bottlenecks and deliberate choice. The fundamental distinction among wild and developed beans is, well, household beans are less energizing. There is a huge increment in seed weight, and the seed units are less inclined to break than wild structures: yet the essential change is a diminishing in theâ variability of grain size, seed coat thickness and water admission during cooking. Residential plants are likewise annuals instead of perennials, a chose attribute for unwavering quality. In spite of their brilliant assortment, the household bean is significantly more unsurprising. Focuses Of Domestication Insightful research shows that beans were trained in two places: the Andes piles of Peru, and the Lerma-Santiago bowl of Mexico. The wild regular bean develops today in the Andes and Guatemala: two separate enormous genetic stocks of the wild sorts have been distinguished, in view of the variety in the kind of phaseolin (seed protein) in the seed, DNA marker decent variety, mitochondrial DNA variety and intensified part length polymorphism, and short succession rehashes marker information. The Middle American genetic supply stretches out from Mexico through Central America and into Venezuela; the Andean genetic supply is found from southern Peru to northwestern Argentina. The two genetic stocks separated approximately 11,000 years back. By and large, Mesoamerican seeds are little (under 25 grams for every 100 seeds) or medium (25-40 gm/100 seeds), with one sort of phaseolin, the significant seed stockpiling protein of the regular bean. The Andean structure has a lot bigger seeds (more prominent than 40 gm/100 seed weight), with an alternate sort phaseolin. Perceived landraces in Mesoamerica incorporate Jalisco in beach front Mexico close Jalisco state; Durango in the focal Mexican good countries, which incorporates pinto, extraordinary northern, little red and pink beans; and Mesoamerican, in swamp tropical Central American, which incorporates dark, naval force and little white. Andean cultivars incorporate Peruvian, in the Andean good countries of Peru; Chilean in northern Chile and Argentina; and Nueva Granada in Colombia. Andean beans incorporate the business types of dim and light red kidney, white kidney, and cranberry beans. Sources in Mesoamerica In 2012, work by a gathering of geneticists drove by Roberto Papa was distributed in the Proceedings of the National Academy of Sciences (Bitocchi et al. 2012), arguing for a Mesoamerican starting point everything being equal. Father and associates analyzed the nucleotide decent variety for five unique qualities found in all structures wild and tamed, and including models from the Andes, Mesoamerica and a middle person area among Peru and Ecuador-and took a gander at the geographic dispersion of the qualities. This investigation proposes that the wild structure spread from Mesoamerica, into Ecuador and Columbia and afterward into the Andes, where an extreme bottleneck diminished the quality assorted variety, sooner or later before taming. Training later occurred in the Andes and in Mesoamerica, autonomously. The significance of the first area of beans is because of the wild flexibility of the first plant, which permitted it to move into a wide assortment of climatic systems, from the marsh tropics of Mesoamerica into the Andean good countries. Dating the Domestication While the specific date of training for beans has not yet been resolved, wild landraces have been found in archeological destinations dated to 10,000 years prior in Argentina and 7,000 years back in Mexico. In Mesoamerica, the most punctual development of household regular beans happened before ~2500 in the Tehuacan valley (at Coxcatlan), 1300 BP in Tamaulipas (at (Romeros and Valenzuelas Caves close Ocampo), 2100 BP in the Oaxaca valley (at Guila Naquitz). Starch grains from Phaseolus were recouped from human teeth from Las Pircas stage locales in Andean Peru dated between ~6970-8210 RCYBP (around 7800-9600 schedule a very long time before the present). Sources Angioi, SA. Beans in Europe: root and structure of the European landraces of Phaseolus vulgaris L. Rau D, Attene G, et al., National Center for Biotechnology Information, U.S. National Library of Medicine, September 2010. Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Spagnoletti Zeuli P, Logozzo G, Stougaard J, McClean P, Attene G et al. 2012. Mesoamerican root of the normal bean (Phaseolus vulgaris L.) is uncovered by succession information. Procedures of the National Academy of Sciences Early Edition. Earthy colored CH, Clement CR, Epps P, Luedeling E, and Wichmann S. 2014. The Paleobiolinguistics of the Common Bean (Phaseolus vulgaris L.). Ethnobiology Letters 5(12):104-115. Kwak, M. Structure of hereditary assorted variety in the two significant genetic supplies of basic bean (Phaseolus vulgaris L., Fabaceae). Gepts P, National Center for Biotechnology Information, U.S. National Library of Medicine, March 2009. Kwak M, Kami JA, and Gepts P. 2009. The Putative Mesoamerican Domestication Center is Located in the Lerma-Santiago Basin of Mexico. Harvest Science 49(2):554-563. Mamidi S, Rossi M, Annam D, Moghaddam S, Lee R, Papa R, and McClean P. 2011. Examination of the taming of normal bean ( Functional Plant Biology 38(12):953-967.Phaseolus vulgaris) utilizing multilocus succession information. Mensack M, Fitzgerald V, Ryan E, Lewis M, Thompson H, and Brick M. 2010. Assessment of assorted variety among normal beans (Phaseolus vulgaris L.) from two focuses of training utilizing omics advancements. BMC Genomics 11(1):686. Nanni, L. Nucleotide assorted variety of a genomic grouping like SHATTERPROOF (PvSHP1) in tamed and wild normal bean (Phaseolus vulgaris L.). Bitocchi E, Bellucci E, et al., National Center for Biotechnology Information, U.S. National Library of Medicine, December 2011, Bethesda, MD. Peã ±a-Valdivia CB, Garcã ­a-Nava JR, Aguirre R JR, Ybarra-Moncada MC, and Lã ³pez H M. 2011. Variety in Physical and Chemical Characteristics of Common Bean (Phaseolus vulgaris L.) Grain along a Domestication Gradient. Science Biodiversity 8(12):2211-2225. Piperno DR, and Dillehay TD. 2008. Starch grains on human teeth uncover early wide harvest diet in northern Peru. Procedures of the National Academy of Sciences 105(50):19622-19627. Scarry, C. Margaret. Harvest Husbandry Practices in North America’s Eastern Woodlands. Contextual investigations in Environmental Archeology, SpringerLink, 2008. J, Schmutz. A reference genome for regular bean and genome-wide examination of double regulations. McClean PE2, Mamidi S, National Center for Biotechnology Information, U.S. National Library of Medicine, July 2014, Bethesda, MD. Tuberosa (Editor). Genomics of Plant Genetic Resources. Roberto, Graner, et al., Volume 1, SpringerLink, 2014.

Tuesday, July 14, 2020

Literary Pet Peeves When Characters Preach

Literary Pet Peeves When Characters Preach Everyone has literary pet peeves. For some, it’s the precocious child narrator. Some people can’t deal with it when the author breaks the fourth wall. Perhaps you get a little stabby when confronted with linked short stories. For me, the most irritating, infuriating, rage-inducing Literary Thing is the preachy book that uses the conversations of the characters as a mouthpiece for the author’s Message-With-A-Capital-M. I don’t mean preachy like the Anne of Green Gables, let’s all just be nice and have bosom friends and plant gardens kind of preachy. In fact, preachiness in a kid’s book doesn’t really bother me at all. It’s when the preachiness is masquerading as literary fiction that I get a little eye-rolley. When I can point to a book and say, “this was used by the author to explain his/her world view,” a book has passed the preachiness threshold. More specifically, if a selection of dialogue or a speech given by the narrator (or worse, a dream a character has) can be added to the end of the sentence, “The moral of the story is ___,” the author is preaching. It doesn’t even matter WHAT is being said. Whether it’s Shug Avery’s dialogue-driven explanations of the nature of God in The Color Purple or John Galt’s ridiculous 70-page defense of heartless capitalism in Atlas Shrugged, the whole Using Your Characters’ Conversations To Make a Moral/Political/Religious Point is pet peeve-tastic. It’s lazy. Just write an essay.* This can be a truly unpopular opinion in circles of readers who are in books for their “improving” capabilities. I’m not that reader. I’m in it for a good story and for excellent writing that makes me appreciate what language can do. I’m not in it to be directly told what to think by a character while they’re doing the laundry or addressing the multitudes. I’m not saying that I’m not open to new ideas or thought processes that are presented in fiction- I’m just not open to them when they’re presented cheaply and without subtlety. I need to be quietly drawn in by the prose, gently led to your conclusion (or even better, given the opportunity to arrive there myself). Am I alone here? Among your literary pet peeves, does this one factor in your reading life? *Moralizing in Victorian-or-older novels isn’t as bothersome to me because that was where the evolution of literature was at the time. I feel like storytelling has moved on by now. Sign up to Unusual Suspects to receive news and recommendations for mystery/thriller readers. Thank you for signing up! Keep an eye on your inbox.

Thursday, May 21, 2020

Sample Resume On Value Stream Mapping - 2219 Words

Contents Introduction 2 Steps for preparing VSM 2 VSM to develop Facility Layouts 4 Facility Layout – Micro 5 Facility Layout – Macro 8 Exhibit1 11 Exhibit 2 11 Exhibit 3 12 Exhibit 4 12 Introduction Mike Rother and John Shook were asked to use their knowledge of Toyota practices to create a simple tool for managers to enable them to see the flow of value. They came up with Value Stream Mapping. This lean tool can help companies optimize their production in such a way that it results in drastic reduction in cost and throughput time and also improved quality. Value Stream Mapping (VSM) allows user to create a concrete plan to make most efficient use of the available resources. VSM is one of the most powerful lean tool for an organization in implementing and improving on its lean journey. VSM shows the all the process from order entry to delivery. The value stream in a VSM is the point at which value is actually added to the product or service by changing its market form or function. Value adding activities can be things like: machining, assembly, welding, folding and so on. Scope of Value Stream Value Stream Map can be drown for three different levels: An extended level map as the view of the values stream at 60,000 feet, the facility level map at 30,000 feet and the process level map at 10,000 feet. Steps for preparing VSM Forming the team: For creating VSM it is very important to create a proper cross functional team consisting of supervisory orShow MoreRelatedThe Flixborough Disaster As A System And The Impact Of Process Safety Management On Industry Safety3454 Words   |  14 Pagesintroduction of Process safety management in 1990. Bertalanffy, (1968) describes in his book General Systems Theory that formal mapping can be used between complex structures where the two structures contain equal parts. A consequence of the existence of general system properties is the appearance of structural similarities or Isomorphisms in different fields. Isomorphism is a consequenceRead MoreImplementation of Lean Manufacturing Tools in Garment Manufacturing Process Focusing Sewing Section of Men’s Shirt17575 Words   |  71 Pages........ 25 2.6.4 Total Productive Maintenance ............... ......................................................... 28 2.6.6 Waste Reduction Techniques .......................................................................... 31 2.6.7 Value Stream mapping .................................................................................... 32 2.7 Method Study ........................................................................................................ 33 2.8 Labor Standards and WorkRead MoreTibco Admin46376 Words   |  186 Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Throughput Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Sample Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Appendix A TIBCO Hawk MicroAgent Methods . . . . . . . . . . . . . . . . . . . . . . .Read MoreThe Role of Human Resource Information Systems (Hris) in Strategic Human Resource Management (Shrm)19886 Words   |  80 Pages49 6.2 Research questions and Hypotheses........................................................................ 50 6.3 Hypotheses development......................................................................................... 51 6.4 Data and Sample collection methods ...................................................................... 57 6.5 Chapter summary .................................................................................................... 58 7 EMPIRICAL RESULTS AND ANALYSISRead MoreComputer Networking: a Top-Down Approach Featuring the Internet, 4th Edition - Solutions to Review Questions and Problems27823 Words   |  112 Pagessocket it should pass the payload of the TCP segment. Thus, the requests from A and B pass through different so ckets. The identifier for both of these sockets has 80 for the destination port; however, the identifiers for these sockets have different values for source IP addresses. Unlike UDP, when the transport layer passes a TCP segment’s payload to the application process, it does not specify the source IP address, as this implicitly specified by the socket identifier. 9. Sequence numbers are requiredRead MoreControl Your Destiny or Someone Else Will10092 Words   |  41 Pages (p.108) A statement of the four main goals behind the portfolio changes appeared in 1985, as part of a draft of GE’s corporate values: †¢ †¢ †¢ †¢ Market leadership: The rule of No. 1 or No. 2 â€Å"Well-above-average real returns† on investments: Welch refused to set inflexible numerical targets. A distinct competitive advantage: The best way to avoid â€Å"slugfests† is to provide value no competitor can match. Leverage from GE’s particular strengths: GE is w ell equipped to prevail in largerscale, complex pursuitsRead MoreThe Birth of Android7542 Words   |  31 Pages A developer should predefine and list all components, which he wants to use in the specific AndroidManifest.xml file. It is a required file for all the applications and is located in the root folder. It is possible to specify all global values for the package, all the components and its classes used, intent filters, which describe where and when the certain activity should start, permissions and instrumentation like security control and testing. Here is an example of AndroidManifestRead MoreNsa Capstone Project Essay16270 Words   |  66 Pageswill be taken. This evaluation will be given to your teaching and IT staff. It will give us a basis of how much basic training that will have to be done. This can give our company a base line for the other sites so training can be as efficient and stream lined as possible. Training will be based that the school employees know basic computer skills such as: proper shutdown procedures, how to use mouse/keyboards, and general navigation skills. Training will start the day after full connectivity is reachedRead MoreProblems and Prospect of Marketing Petroleum in Nigeria15386 Words   |  62 PagesControl 46 2.14 Government involvement in Oil Industry 46 2.15 Major problems affecting the storage and distribution of petroleum products 49 CHAPTER THREE RESEARCH METHODOLOGY 3.1 Data Specification 51 3.2 Sampling Techniques and Sample size 51 3.3 Method of Data collection 52 3.4 Method of Data analysis 52 3.5 Historical background of NNPC 52 3.6 The Nigerian national corporation in the Nation’s oil Industry 55 CHAPTER FOUR DATA PRESENTATION AND ANALYSISRead MoreStrategic Analysis of Sabmiller16462 Words   |  66 Pagesthe city and forced the Castle Brewery to close for almost a year. When British troops recovered the area, the brewery had sustained little or no damage. British authorities regarded the plant as an essential industry and encouraged the company to resume production in August 1900. Disrupted supply lines caused shortages of yeast and other raw materials, but within a year production had returned to full capacity. The Boer War ended in 1902 but was followed by a severe economic depression. The brewing

Wednesday, May 6, 2020

I Found That My Personality Type - 1738 Words

Getting in touch with your inner personality type can be a very beneficial tool to anyone. After participating in the Jung Typology test, I found that my personality type was ENTJ. After some extensive research into this personality type I found that were a lot of advantages of this personality especially in my line of work but there are also many things I can work on to make myself a better person both in my professional and personal life. One of the interesting things that I noticed with my personality test in particular was that I did not show any real distinct qualities in the four categories, meaning, I had relatively low percentages for most of them. I was a moderate extravert with slight partiality to intuition, thinking and†¦show more content†¦Step 1 Extravert – 44% I think the personality test was spot on in describing me as a pretty moderate extravert. Even though I do enjoy my alone time here and there, I do spend most of my time around other people and that’s how I like it. In my day-to-day job as an instructor pilot, this quality really helps me because I am able to talk easily with my students and teach them the necessary things for them to succeed. I think probably the biggest downfall of my being an extravert is in my personal life. My girlfriend actually teases me that I have problems being alone. I would much rather do things with someone else than on my own. Even simple things like grocery shopping or working out, I would rather have a friend to converse with than do alone. This is right in line with the results of my personality test which said â€Å"ENTJ’s love to interact with people. As Extroverts, they’re energized and stimulated primarily externally.† (Personality Page) Iâ€℠¢ve noticed sometimes that being alone can actually really bother me. I tend to let my mind wander when I am alone with my thoughts and can sometimes even get anxious about certain things. This is one of the things that I really need to work on. iNtuitive – 12% This was the one section of the test that I did not agree with very much. The Meyers Briggs Foundation describes an intuitive person as someone who pays more attention to impressions and patterns in information

Organic Farming Business Proposal Free Essays

string(62) " conditions are often even more reliant upon external inputs\." PB B A S E M E S T E R V I ORGANIC FARMING PROPOSAL GROUP 6 Iftekhar Ansari, Mujtaba Yameen, Priyamvada Panicker, Akbote Shiva, Vikas D, Jayadev B BBA †¢ Semester VI †¢ Group VI†¢ Organic Farming B B A S E M E S T E R V I BBA †¢ Semester VI †¢ Group VI†¢ Organic Farming Organic Farming Introduction Organic farming is the form of agriculture that relies on techniques such as crop rotation, green manure, compost and biological pest control. Organic farming uses fertilizers and pesticides but excludes or strictly limits the use of manufactured (synthetic) fertilizers, pesticides (which include herbicides, insecticides and fungicides), plant growth regulators such as hormones, livestock antibiotics, food additives, genetically modi? d organisms, human sewage sludge, and nanomaterials Organic agricultural methods are internationally regulated and legally enforced by many nations, based in large part on the standards set by the International Federation of Organic Agriculture Movements (IFOAM), an international umbrella organization for organic farming organizations established in 1972. IFOAM de? nes the overarching goal of organic farming as: â€Å"Organic agriculture is a production system that sustains the health of soils, ecosystems and people. We will write a custom essay sample on Organic Farming Business Proposal or any similar topic only for you Order Now It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic agriculture combines tradition, innovation and science to bene? t the shared environment and promote fair relationships and a good quality of life for all involved†¦ † —International Federation of Organic Agriculture Movements Since 1990, the market for organic products has grown from nothing, reaching $55 billion in 2009 according to Organic Monitor (www. organicmonitor. com). This demand has driven a similar increase in organically managed farmland which has grown over the past decade at a compounding rate of 8. 9% per annum. [5] Approximately 37,000,000 hectares (91,000,000 acres) worldwide are now farmed organically, representing approximately 0. 9 percent of total world farmland (2009) History Organic farming (of many particular kinds) was the original type of agriculture, and has been practiced for thousands of years. Forest gardening, a fully organic food production system which dates from prehistoric times, is thought to be the world’s oldest and most resilient agroecosystem. After the industrial revolution had introduced inorganic methods, some of which were not well developed and had serious side effects, an organic movement began in the mid-1920s in Central Europe through the work of Rudolf Steiner, who created biodynamic agriculture, an early version of organic agriculture. Organic agriculture was independently developed in the 1940s England through the work of Albert Howard as a reaction to agriculture’s growing reliance on synthetic fertilizers. Arti? ial fertilizers had been created during the 18th century, initially with superphosphates and then ammonia-based fertilizers mass-produced using the Haber-Bosch process developed during World War I. These early fertilizers were cheap, powerful, and easy to transport in bulk. Similar advances occurred in chemical pesticides in the 1940s, leading to the decade being referred to as the ‘pesticide era’. Although organic farming is prehistoric in the widest sense, Sir Albert Howard is wid ely considered to be the â€Å"father of organic farming† in the sense that he was a key founder of the post-industrial-revolution organic movement. Further work was done by J. I. Rodale in the United States, Lady Eve Balfour in the United Kingdom, and many others across the world. The ? rst lectures and publications on organic agriculture stem from Rudolf Steiner, however, whose Lectures on Agriculture were published in 1925. The modern organic movement is a revival movement in the sense that it seeks to restore balance that was lost when technology grew rapidly in the 19th and 20th centuries. Modern organic farming has made up only a fraction of total agricultural output from its beginning until today. Increasing environmental awareness in the general population has transformed the originally supply-driven movement to a demand-driven one. Premium prices and some government subsidies attracted farmers. In the developing world, many G r o u p V I! Organic Farming 1 producers farm according to traditional methods which are comparable to organic farming but are not certi? ed. In other cases, farmers in the developing world have converted for economic reasons Methods Soil management Plants need nitrogen, phosphorus, and potassium, as well as micronutrients and symbiotic relationships with fungi and other organisms to ? urish, but getting enough nitrogen, and particularly synchronization so that plants get enough nitrogen at the right time (when plants need it most), is likely the greatest challenge for organic farmers. Crop rotation and green manure (â€Å"cover crops†) help to provide nitrogen through legumes (more precisely, the Fabaceae family) which ? x nitrogen from the atmo sphere through symbiosis with rhizobial bacteria. Intercropping, which is sometimes used for insect and disease control, can also increase soil nutrients, but the competition between the legume and the crop can be problematic and wider spacing between crop rows is required. Crop residues can be ploughed back into the soil, and different plants leave different amounts of nitrogen, potentially aiding synchronization. Organic farmers also use animal manure, certain processed fertilizers such as seed meal and various mineral powders such as rock phosphate and greensand, a naturally occurring form of potash which provides potassium. Together these methods help to control erosion. In some cases pH may need to be amended. Natural pH amendments include lime and sulfur, but in the U. S. ome compounds such as iron sulfate, aluminum sulfate, magnesium sulfate, and soluble boron products are allowed in oganic farming. Mixed farms with both livestock and crops can operate as ley farms, whereby the land gathers fertility through growing nitrogen-? xing forage grasses such as white clover or alfalfa and grows cash crops or cereals when fertility is established. Farms without livestock (â€Å"stockless†) may ? nd it more dif? cult to maintain fertility, and may rely more on external inputs such as imported manure as well as grain legumes and green manures, although grain legumes may ? limited nitrogen because they are harvested. Horticultural farms growing fruits and vegetables which operate in protected conditions are often even more reliant upon external inputs. You read "Organic Farming Business Proposal" in category "Essay examples" Biological research on soil and soil organisms has proven bene? cial to organic farming. Varieties of bacteria and fungi break down chemicals, plant matter and animal waste into productive soil nutrients. In turn, they produce bene? ts of healthier yields and more productive soil for future crops. Fields with less or no manure display signi? antly lower yields, due to decreased soil microbe community, providing a healthier, more arable soil system Weed management Organic weed management promotes weed suppression, rather than weed elimination, by enhancing crop competition and phytotoxic effects on weeds. Or ganic farmers integrate cultural, biological, mechanical, physical and chemical tactics to manage weeds without synthetic herbicides. Organic standards require rotation of annual crops, meaning that a single crop cannot be grown in the same location without a different, intervening crop. Organic crop rotations frequently include weed-suppressive cover crops and crops with dissimilar life cycles to discourage weeds associated with a particular crop. Organic farmers strive to increase soil organic matter content, which can support microorganisms that destroy common weed seeds. Other cultural practices used to enhance crop competitiveness and reduce weed pressure include selection of competitive crop varieties, high-density planting, tight row spacing, and late planting into warm soil to encourage rapid crop germination. Mechanical and physical weed control practices used on organic farms can be broadly grouped as: Tillage – Turning the soil between crops to incorporate crop residues and soil amendments; remove existing weed growth and prepare a seedbed for planting; G r o u p V I! Organic Farming 2 Cultivation – Disturbing the soil after seeding; Mowing and cutting – Removing top growth of weeds; Flame weeding and thermal weeding – Using heat to kill weeds; and Mulching – Blocking weed emergence with organic materials, plastic ? lms, or landscape fabric. Some naturally sourced chemicals are allowed for herbicidal use. These include certain formulations of acetic acid (concentrated vinegar), corn gluten meal, and essential oils. A few selective bioherbicides based on fungal pathogens have also been developed. At this time, however, organic herbicides and bioherbicides play a minor role in the organic weed control toolbox. Weeds can be controlled by grazing. For example, geese have been used successfully to weed a range of organic crops including cotton, strawberries, tobacco, and corn, reviving the practice of keeping cotton patch geese, common in the southern U. S. before the 1950s. Similarly, some rice farmers introduce ducks and ? sh to wet paddy ? elds to eat both weeds and insects. Controlling other organisms Organisms aside from weeds that cause problems on organic farms include arthropods (e. g. , insects, mites), nematodes, fungi and bacteria. Organic farmers use a wide range of Integrated Pest Management practices to prevent pests and diseases. These include, but are not limited to, crop rotation and nutrient management; sanitation to remove pest habitat; provision of habitat for bene? ial organisms; selection of pest-resistant crops and animals; crop protection using physical barriers, such as row covers; and crop diversi? cation through companion planting or establishment of polycultures. Organic farmers often depend on biological pest control, the use of bene? cial organisms to reduce pest populations. Examples of bene? cial insects include minute pirate bugs, big-eyed bugs, and to a lesser extent ladybugs (which tend to ? y away) , all of which eat a wide range of pests. Lacewings are also effective, but tend to ? y away. Praying mantis tend to move more slowly and eat less heavily. Parasitoid wasps tend to be effective for their selected prey, but like all small insects can be less effective outdoors because the wind controls their movement. Predatory mites are effective for controlling other mites. When these practices are insuf? cient to prevent or control pests an organic farmer may apply a pesticide. With some exceptions, naturally occurring pesticides are allowed for use on organic farms, and synthetic substances are prohibited. Pesticides with different modes of action should be rotated to minimize development of pesticide resistance. Naturally derived insecticides allowed for use on organic farms use include Bacillus thuringiensis (a bacterial toxin), pyrethrum (a chrysanthemum extract), spinosad (a bacterial metabolite), neem (a tree extract) and rotenone (a legume root extract). These are sometimes called green pesticides because they are generally, but not necessarily, safer and more environmentally friendly than synthetic pesticides. Rotenone and pyrethrum are particularly controversial because they work by attacking the nervous system, like most conventional insecticides. Fewer than 10% of organic farmers use these pesticides regularly; one survey found that only 5. 3% of vegetable growers in California use rotenone while 1. 7% use pyrethrum (Lotter 2003:26). Naturally derived fungicides allowed for use on organic farms include the bacteria Bacillus subtilis and Bacillus pumilus; and the fungus Trichoderma harzianum. These are mainly effective for diseases affecting roots. Agricultural Research Service scientists have found that caprylic acid, a naturally occurring fatty acid in milk and coconuts, as well as G r o u p V I! Organic Farming 3 other natural plant extracts have antimicrobial characteristics that can help. Compost tea contains a mix of bene? cial microbes, which may attack or out-compete certain plant pathogens, but variability among formulations and preparation methods may contribute to inconsistent results or even dangerous growth of toxic microbes in compost teas. Some naturally derived pesticides are not allowed for use on organic farms. These include nicotine sulfate, arsenic, and strychnine. Synthetic pesticides allowed for use on organic arms include insecticidal soaps and horticultural oils for insect management; and Bordeaux mixture, copper hydroxide and sodium bicarbonate for managing fungi. Genetic modi? cation A key characteristic of organic farming is the rejection of genetically engineered plants and animals. On October 19, 1998, participants at IFOAM’s 12th Scienti? c Conference issued the Mar del Plata Declaration, where more than 600 delegates from over 60 countries voted unanimously to exclude the use of genetically modi? ed organisms in food production and agriculture. Although opposition to the use of any transgenic technologies in organic farming is strong, agricultural researchers Luis Herrera-Estrella and Ariel Alvarez-Morales continue to advocate integration of transgenic technologies into organic farming as the optimal means to sustainable agriculture, particularly in the developing world. [32] Similarly, some organic farmers question the rationale behind the ban on the use of genetically engineered seed because they view this kind of biotechnology consistent with organic principles. Although GMOs are excluded from organic farming, there is concern that the pollen from genetically modi? d crops is increasingly penetrating organic and heirloom seed stocks, making it dif? cult, if not impossible, to keep these genomes from entering the organic food supply. International trade restrictions limit the availability GMOs to certain countries. The hazards that genetic modi? cation could pose to the environment are hotly contested Economics The econom ics of organic farming, a sub? eld of agricultural economics, encompasses the entire process and effects of organic farming in terms of human society, including social costs, opportunity costs, unintended consequences, information asymmetries, and economies of scale. Although the scope of economics is broad, agricultural economics tends to focus on maximizing yields and ef? ciency at the farm level. Economics takes an anthropocentric approach to the value of the natural world: biodiversity, for example, is considered bene? cial only to the extent that it is valued by people and increases pro? ts. Some entities such as the European Union subsidize organic farming, in large part because these countries want to account for the externalities of reduced water use, reduced water contamination, reduced soil erosion, reduced carbon emissions, increased biodiversity, and assorted other bene? s that result from organic farming. Traditional organic farming is labor and knowledge-intensive whereas conventional farming is capital-intensive, requiring more energy and manufactured inputs. Organic farmers in California have cited marketing as their greatest obstacle. G r o u p V I! Organic Farming 4 Geographic producer distribution The markets for organic produc ts are strongest in North America and Europe, which as of 2001 are estimated to have $6 and $8 billion respectively of the $20 billion global market (Lotter 2003:6). As of 2007 Australasia has 39% of the total organic farmland, including Australia’s 1,180,000 hectares (2,900,000 acres) but 97 percent of this land is sprawling rangeland (2007:35). US sales are 20x as much. (2003). Europe farms 23 percent of global organic farmland (6. 9 million hectares), followed by Latin America with 19 percent (5. 8 million hectares). Asia has 9. 5 percent while North America has 7. 2 percent. Africa has 3 percent. Besides Australia, the countries with the most organic farmland are Argentina (3. 1 million hectares), China (2. 3 million hectares), and the United States (1. million hectares). Much of Argentina’s organic farmland is pasture, like that of Australia (2007). Italy, Spain, Germany, Brazil (the world’s largest agricultural exporter), Uruguay, and the UK follow the United States in the amount of organic land (2007). Growth Organic farmland by world region (2000-2008) As of 2001, the estimated market value of certi? ed organic produc ts was estimated to be $20 billion. By 2002 this was $23 billion and by 2007 more than $46 billion. In recent years both Europe (2007: 7. 8 million hectares, European Union: 7. 2 million hectares) and North America (2007: 2. million hectares) have experienced strong growth in organic farmland. In the EU it grew by 21% in the period 2005 to 2008. However, this growth has occurred under different conditions. While the European Union has shifted agricultural subsidies to organic farmers due to perceived environmental bene? ts, the United States has not, continuing to subsidize some but not all traditional commercial crops, such as corn and sugar. As a result of this policy difference, as of 2008 4. 1% G r o u p V I! Organic Farming 5 percent of European Union farmland was organically managed compared to the 0. 6 percent in the U. S. IFOAM’s most recent edition of The World of Organic Agriculture: Statistics and Emerging Trends 2009 lists the countries which had the most hectares in 2007. The country with the most organic land is Australia with more than 12 million hectares, followed by Argentina, Brazil and the US. In total 32. 2 million hectares were under organic management in 2007. For 1999 11 million hectares of organically managed land are reported. As organic farming becomes a major commercial force in agriculture, it is likely to gain increasing impact on national agricultural policies and confront some of the scaling challenges faced by conventional agriculture. Productivity and pro? tability Various studies ? nd that versus conventional agriculture, organic crops yielded 91%, or 95-100%, along with 50% lower expenditure on fertilizer and energy, and 97% less pesticides, or 100% for corn and soybean, consuming less energy and zero pesticides. The results were attributed to lower yields in average and good years but higher yields during drought years. A 2007 study compiling research from 293 different comparisons into a single study to assess the overall ef? ciency of the two agricultural systems has concluded that †¦ rganic methods could produce enough food on a global per capita basis to sustain the current human population, and potentially an even larger population, without increasing the agricultural land base. (from the abstract) Converted organic farms have lower pre-harvest yields than their conventional counterparts in developed countries (92%) but higher than their low-intensity counterparts in developing countries (132%). This is due to relatively lower adoption of fertilizers and pesticides in the developing world compared to the intensive farming of the developed world. G r o u p V I! Organic Farming Organic farms withstand severe weather conditions better than conventional farms, sometimes yielding 70-90% more than conventional farms during droughts. Organic farms are more pro? table in the drier states of the United States, likely due to their superior drought performance. Organic farms survive hurricane damage much better, retaining 20 to 40% more topsoil and smaller economic losses at highly signi? cant levels than their neighbors. Contrary to widespread belief, organic farming can build up soil organic matter better than conventional no-till farming, which suggests long-term yield bene? s from organic farming. [56] An 18-year study of organic methods on nutrientdepleted soil, concluded that conventional methods were superior for soil fertility and yield in a cold-temperate climate, arguing that muc h of the bene? ts from organic farming are derived from imported materials which could not be regarded as â€Å"self-sustaining†. Pro? tability The decreased cost of synthetic fertilizer and pesticide inputs, along with the higher prices that consumers pay for organic produce, contribute to increased pro? ts. Organic farms have been consistently found to be as or more pro? table than conventional farms. Without the price premium, pro? tability is mixed. Organic production was more pro? table in Wisconsin, given price premiums. Sustainability (African case) In 2008 the United Nations Environmental Programme (UNEP) and the United Nations Conference on Trade and Development (UNCTAD) stated that â€Å"organic agriculture can be more conducive to food security in Africa than most conventional production systems, and that it is more likely to be sustainable in the long-term†[60] and that â€Å"yields had more than doubled where organic, or near-organic practices had been used† and that soil fertility and drought resistance improved. Employment impact Organic methods often require more labor than traditional farming, therefore it provides rural jobs. G r o u p V I! Organic Farming 7 Sales and marketing Most sales are concentrated in developed nations. These products are what economists call credence goods in that they rely on uncertain certi? cation. Interest in organic products dropped between 2006 and 2008, and 42% of Americans polled don’t trust organic produce. 69% of Americans claim to occasionally buy organic products, down from 73% in 2005. One theory was that consumers were substituting â€Å"local† produce for â€Å"organic† produce. Distributors In the United States, 75% of organic farms are smaller than 2. 5 hectares. In California 2% of the farms account for over half of sales. (Lotter 2003) Small farms join together in cooperatives such as Organic Valley, Inc. to market their goods more effectively. Most small cooperative distributors have merged or were acquired by large multinationals such as General Mills, Heinz, ConAgra, Kellogg, and others. In 1982 there were 28 consumer cooperative distributors, but as of 2007 only 3 remained. This consolidation has raised concerns among consumers and journalists of potential fraud and degradation in standards. Most sell their organic products through subsidiaries, under other labels. Organic foods also can be a niche in developing nations. It would provide more money and a better opportunity to compete internationally with the huge distributors. Organic prices are much more stable than conventional foods, and the small farms can still compete and have similar prices with the much larger farms that usually take all of the pro? ts. Farmers’ markets Price premiums are important for the pro? ability of small organic farmers. Farmers selling directly to consumers at farmers’ markets have continued to achieve these higher returns. In the United States the number of farmers’ markets tripled from 1,755 in 1994 to 5,274 in 2009 G r o u p V I! Organic Farming 8 G r o u p V I! Organic Farming 9 G r o u p V I! Organic Farming 10 G r o u p V I! Organic Farming 11 G r o u p V I! Organic Farming 12 G r o u p V I! Organic Farming 13 G r o u p V I! Organic Farming 14 G r o u p V I! Organic Farming 15 G r o u p V I! Organic Farming 16 G r o u p V I! Organic Farming 17 SWOT ANALYSIS OF INDIAN ORGANIC AGRICULTURE (DOMESTIC AND EXPORT MARKET) Organic farming is one such part of agriculture sector which is unexploited yet. The projects strengths, weaknesses, opportunities and threats are discussed below: STRENGTHS: Export of organic produce from India is on the rise With organic farming, comes greater nutritional value and better taste There is increased awareness for healthy food in the present generation The realization of the harmful effects of pesticides and presence of their residues is surfacing The international and national certi? ation bodies in the country that are making it easier for the farmers to certify their produce as â€Å"organic† With increased demand, Central and State Governments are providing more land at cheaper rates for Organic Agriculture The Government is also providing higher subsidies Tax holidays are given a higher priority and are being given to the farmers who produce organics Organic produce being a premium pro duct, pro? ratios will be towards the higher end due to the higher prices Sustainability over the long term There is an enhanced soil structure and water in? ltration Reduces non-renewable energy use by decreasing agrochemical needs (these require high quantities of fossil fuel to be produced by reducing carbon levels in the soil) OA promotes biodiversity at all levels of production Duration of the edibility is longer G r o u p V I! Organic Farming 18 Drought resistive in nature A major strength is that the only technology OA needs is more of the SUN WEAKNESSES: Lack of awareness is the major downside of Organic Agriculture Not only among the customers but also among the farmers Most farmers have small holdings Quality consciousness is low amongst them Lack of marketing skills (mainly due to the disjoint between the agricultural sector and its domestic market not to mention the international market) The market for organics is not consumer-based, but supply oriented There is lower productivity due to the mono-cultured farming Fields may become bland due to the lack or inorganic additives Industrialized agriculture (if a conversion to organic agriculture takes place) exploits the land to an extent where the soil loses its fertility Sowing of seeds is time consuming since direct drilling of seeds (as done in the traditional form of agriculture) increases risk of soil being lost to wind and erosion There is no usage of genetically modi? ed seeds Another major drawback is the time required for the interaction and the observation betwe en the farmer and his crop A requirement for OA is using skilled labor, which is hard to ? nd Finding the speci? c seeds are not only time consuming, but also more expensive Being more supply oriented, it requires a larger workforce to look after it G r o u p V I! Organic Farming 19 OPPORTUNITIES: With the ever growing society and economy in the country and in the world, the growth potential for Organic Agriculture is enormous As of 2001, the estimated market value of certi? ed organic products was estimated to be $20 billion. By 2002 this was $23 billion and by 2007 more than $46 billion and still showing a positive trend Along with the market value, the total farmland assigned for OA is also increasing massively The government is also starting to believe in this form of farming, hence giving its consent for extensive practice throughout the country The Indian Competence Centre of Organic Agriculture (ICCOA) is a promising initiative towards OA and serves as a platform for various activities related to its market development With the continuous growth of the sector, it will be providing a vast number of job opportunities OA helps in making people less reliant on generically modi? ed food and moves them towards healthier living The market for organic fertilizers and other organic materials is also growing and making it easier for the farmers to get hold of all the supplies they need G r o u p V I! Organic Farming 20 THREATS: Dishonesty among the suppliers of the raw materials required, i. e products offere d with declarations such as â€Å"without pesticides†, â€Å"organic† etc. Unavailability of actual organic materials such as seeds, fertilizers and more High costs of being a premium product may prevent success in the market Hesitation for purchase by customers due to lack of awareness Land may be to contaminated or may not be convertible for organic agriculture Training unskilled labor may be tougher than expected Although governments are cooperating for organic farming, some state governments still believe this method is unproductive and may not give the required permissions and grants Lives of organic farmers are being made dif? cult by large food conglomerates as they want the consumers to focus only on their products Unpredictable Climatic Factors G r o u p V I! Organic Farming 21 G r o u p V I! Organic Farming 22 G r o u p V I! Organic Farming 23 G r o u p V I! Organic Farming 24 G r o u p V I! Organic Farming 25 G r o u p V I! Organic Farming 26 G r o u p V I! Organic Farming 27 G r o u p V I! Organic Farming 28 G r o u p V I! Organic Farming 29 G r o u p V I! Organic Farming 30 G r o u p V I! Organic Farming 31 G r o u p V I! Organic Farming 32 G r o u p V I! Organic Farming 33 G r o u p V I! Organic Farming 34 G r o u p V I! Organic Farming 35 G r o u p V I! Organic Farming 36 G r o u p V I! Organic Farming 37 G r o u p V I! Organic Farming 38 G r o u p V I! Organic Farming 39 G r o u p V I! Organic Farming 40 G r o u p V I! Organic Farming 41 G r o u p V I! Organic Farming 42 G r o u p V I! Organic Farming 43 G r o u p V I! Organic Farming 44 G r o u p V I! Organic Farming 45 G r o u p V I! Organic Farming 46 G r o u p V I! Organic Farming 47 G r o u p V I! Organic Farming 48 G r o u p V I! Organic Farming 49 APPENDIX Excerpts from our interview with Mr. Samad Patel, Assistant Director, The Department of Agriculture, Gulbarga, Karnataka M: How is the Government helping in Organic Farming? S: Organic missions are being formed by the governement to promote organic farming amongst the farming community. 1: Organic Village: It is one of the schemes which promotes organic farming in a hundred acre area in a village per block on a pilot basis, thereby other farmers can learn how to do organic farming. 2: Giving subsidy to bio-degradable, vermi-compost units through Agricultural Horticultural Department, Industry Commerce. 3: Establishing organic farming research centers at agricultural universities. M: What are the fertilizers allowed in organic farming? S: 1: Farm Yard Manure 2: City Compost 3: Vermi-Compost 4: Enriched Compost 5: Green Manure M: What is the method of growing the plants in organic farming? S: 1: Sowing the seed with recommended dose of naturally occurring organic fertilizer G r o u p V I! Organic Farming 50 2: Irrigation of the sowed area 3: Seed gets germinated in 1-2 weeks 4: Process of Weeding 5: Harvesting, once the plant is ready 6: Ploughing the ? eld for the next crop M: What are the risks involved with Organic Farming? S: 1: In case of organic farms, there is low yield in the ? rst few years. 2: Pest and Disease management is dif? ult 3: Our soils are addicted to fertilizers and take time to revert back to organic standards 4: It is a very laborious process 5: Organic manure are to be produced by the farms, which is also a lengthy and expensive process 6: Seeds are not easily available 7: High prices may lead to low sales M: Is organic food more nutriti ous than conventional food? S: Yes, organic food has more nutritional value and also has better taste. Reason being that it is produced in its natural method. M: What does â€Å"certi? ed organic† mean? What is the certi? cation process? S: In western countries as well as in India, Organic produce is purchased on basis of the certi? cation by various agencies such as the ICCOA. After completion of the initial three years of production, the farmer must enroll for the certi? cation. The agency then monitors G r o u p V I! Organic Farming 51 the day-to-day cultivation activities and soil testing, the said agency will certify the farm as â€Å"organic†. M: Why does Organic cost more? S: It costs more, because the cost of cultivation is higher although the yield obtained is low. The demand is higher when compared to the supply. Also, it is pesticide and fertilizer free and has a higher nutritional value, steering it towards being a healthier alternative. M: Is there a national standard for Organic Farming? S: No M: How do farmers fertilize crops and control pests, diseases and weeds? S: Organic farmers fertilize crops by using farmyard manure, vermi-compost, green manure etc. : They manage pests by manual collection of pests 2: Botanical extracts 3: Neem Oil 4: Neem Cake 5: By following integrated pest management methods Diseases are managed by: 1: Manual Roughing 2: By using Botanical extracts G r o u p V I! Organic Farming 52 3: Some plants have naturally occurring fungicidal properties Weeds ar e managed by: 1: Summer Ploughing 2: Intercultivation 3: Hand Weeding M: What subsidies does the government provide for organic farmers? S: 1: Vermi-compost per farmer – Rs. 6000 – Rs. 30000 (depending on the size of the farm) 2: Biogas Unit – Rs. 60000 Subsidy 3: City Compost: Distributed at 50% subsidy 4: Green Compost: Sold at 50% subsidy 5: Biodigester: Subsidy of Rs. 0000 (Biodigesters convert organic wastes into a nutrient rich liquid fertilizer and biogas, a renewable source of electrical and heat energy) Irrigation Subsidy Operations Maintenance subsidy + 6 per cent interest on cumulative Irrigation investments Operations Maintenance subsidy + 1 per cent interest on cumulative irrigation investments Power Subsidy G r o u p V I! Organic Farming 53 Difference between average cost of production per unit and the average revenue realized per unit multiplied by agricultural power consumption as estimated by APTRANSCO Difference between the cost to serve agri culture and average revenue realisation per unit multiplied by agricultural power consumption as estimated by APTRANSCO Difference between the cost to serve agriculture and average revenue realised per unit multiplied by power consumption as estimated by AP Farmers Federation G r o u p V I! Organic Farming 54 ACKNOWLEDGMENT We would like to thank our Entrepreneurship Development faculty, Mrs. Radhika, for giving us the opportunity to create a project report such as this, which was a widely informative and knowledge building exercise. We also worked in tandem with Mr. Samad Patel, Assistant Director of The Department of Agriculture, Gulbarga, Karnataka, throughout our research. He guided us through our dif? culties and gave us essential information that we needed to complete our analysis. G r o u p V I! Organic Farming 55 How to cite Organic Farming Business Proposal, Essay examples

Friday, April 24, 2020

Role of IT in HRM Essay Example Essay Example

Role of IT in HRM Essay Example Paper Role of IT in HRM Essay Introduction This report suggests the pervasive requirement of IT tools in HRS processes and E- recruitment in an enterprise can bring increased productivity and cost effectiveness. Basically, the availability of information technology(alt) has not been the problem, but its identification, partition and procrastination by HRS mangers to support their HRS initiatives. There are three ways in which IT can impact human resource management I. E Operational, Relational and transformational. Application of IT in HRS can help human capital to achieve competitive advantage. E-recruitment(online recruitment)is also a cost effective strategy. It attracts a diversified pool of employees with less expenditure on advertising. Though. The quality of candidates attracted by E-recruitment is either equivalent or less than the other sources of recruitment . Therefore, it is not the most effective source. Through a questionnaire techniques, an analysis of both IT and E-recruitment has been conducted on HRS process es of an information engineering company. Results has shown the immense effectiveness of IT in HRS and the company stands out as an successful enterprise. Surely, it has reduced the burden of human resource management. Role of IT HARM: Now a days, top leaders fully realize the power of information technology tools can help them reach business targets. The utilization of IT tools in the business helps to define business goals and also optimize the work processes. The contemporary studies constantly confirm contribution of IT tools in Human Resource area I. To accomplish tasks assigned to HRS using IT capabilities. IT encompasses a wide range of tools hardware (from word-processing programs to expert system),software (from main-frames to incomprehensibility and work stations. The vast majority of firms as made use of HARM to transform HRS functions. IT within HRS stores and retrieves large amount of information quickly and inexpensively to institutionalize organizational knowledge. La tely, IT in human resource processes has been the centre of attention for employers in every organization. Role of IT in HRM Essay Body Paragraphs IT can be a potent weapon for lowering administrative costs, increasing productivity, speeding response time, improving decision making, and enhancing customer service. Ultimately, IT can provide data and communications platform that helps HRS link and leverage the firm’s human capital to achieve competitive advantage. Furthermore the overwhelming majority of HRS departments have never used their systems for strategic purposes. The problems tend not to be with the availability of IT for HRS application. Indeed, virtually all of the technology needed to compete in the twenty-first century is readily accessible today. Rather, the evidence suggests that senior managers do not have a workable framework that conveys how IT can be leveraged to exploit its full benefits with HRS. The study called â€Å"Effects of HARM practices on IT usage† (Lee, 2009) shows that organizations use technologies for HRS field such as employee participation, Leary defined Jobs and extensive forma l training. We describe three basic ways in which IT can impact HRS: First, the operational impact of IT; that is, alleviating the administrative burden, reducing costs, and improving productivity internal to the HRS functions itself. The strong administrative component of HRS makes it a logical candidate for automation because cost reduction and increased productivity have been pre-eminent goals of HRS Second, the relational impact of IT; that is, providing managers and employees access to the HRS databases, simultaneously reducing response time, and improving revive levels. It supports HRS related decisions by increasing ability to communicate with others in corporations. Third, the transformational impact of IT; that is, organizing human interaction to create virtual teams and more flexible network organizations. In environment characterized by uncertainty and intense rivalry, many companies are scrambling to reinvent themselves. Trends toward restructuring, reengineering, outsou rcing and strategic alliances all represent efforts by organizations to change the way they do business. IT plays a pivotal role in this transformation. B. E-Recruitment: It is the process involving tasks like finding, attracting, assessing, interviewing and hiring new personnel using technology and web-based services. Online recruitment provides a large pool of employees and facilitates the selection process. The online promotion of an organization as a desirable place to work, through the corporate website or other venues, is one element of e-recruitment. Due to the fact that E- recruitment has a â€Å"virtual† nature. Information gathered suggests two sources: Off- line sources: Specialized magazines in e-Recruitment ,New Technologies and the economy, National and International. On-Line sources: Corporate Web pages for multinational companies Web pages of research centers located in Business Schools and Universities Large Portals and search engine Advantages are: Cost effe ctiveness because of less expenditure on advertising, generates wider geographic pool of employees and potential candidates feel easier to access the company they desire to work for. Disadvantages are: Unguarded outcome: There is no guarantee that company will find what they need out of candidates Time consuming assessment: It makes it time consuming to sift wrought lot of C.v. to reach the candidates ultimately having the skills Standardized formats: Qualified candidates that may not be allowed to demonstrate their skills and talents due to inhibitions put in place by standardized formats is definitely not fairly evaluated. II. ‘ENGINEERING: A. Introduction: engineering is a privately owned global information-engineering firm, founded in 1999. The firm was established with the intention to provide the most best and proficient offshore services in the field of information technology. ‘Engineering is an ISO 9001 :2000 certified company with the mission to provide cost-eff ective quality illusions and the most reliable software development, quality assurance and technical support services to the enterprises worldwide. engineering perceives technology at high spirits. engineering is always there to back its customers right from the idea to the delivery, maintenance and support of solutions. The company envisions of becoming the leading provider of software services , while sustaining a balance between quality, cost and time. B. Role of IT in HRS and E-recruitment: On interrogating the HRS manager, Seed M Eczema, of the firm about the processes hey follow, he mentioned that in order to keep the services efficient and UN-match able and processes transparent, engineering practices a range of IT procedures which are as follows: Recruitment of employees is done through online platforms like rose. PC and Pakistan Software Exports board database. These are regularly checked for potential C.v. and then selected C.v. are transferred to the supervisors and the t eam leads who then make a list of candidates to be called at Scheduling Software. Training is provided on the Job and ISMS(eliminated security management system) Training, CACM(Capability Maturity Model Integration) and ISO 27000-27001 training procedures are followed. Trainings are provided in the large Conference Room with all state-of-the-art IT facilities like Large Screens, Computers, Internet and Server Access. Job Description is available to each employee via server on their own computer system customized. It is arranged according to the seniority and experience of employees with respect to roles, rights and responsibilities. Online chat application with the organization and email notifications make it handy for employees to discuss their problems. There is a â€Å"Finger Printing Device† accessible by HRS manager and GM operations to take into account attendance and timing of each employee. Performance is accessed through activity sheet. Through this data Transfer , P romotion, Pay Roll Maintenance and Lay-off decisions are made. Online Human resource portal on the company server keeps record of all the Compensation, Benefits and Services of Employees. Policy Initiation and formulation are all under ISMS procedure and company makes sure that each employee gets notified through company server and online portal. All employees work on their assigned computers customized according to their roles and rights. Through this records of Training and Development is made. HRS manager, well-equipped with IT knowledge, provides training to employees in the conference room to update skills inventory. Here again, ISMS,COMIC and ISO 27000-27001 training procedures are followed. Organization Planning and Development are also headed by HRS Department under the same rules and procedures, all possible through IT. Ill. Recommendations: As the company itself is an software development/alt company so all the IT facilities are absolutely fitting according to the organiza tion needs. It surely reduces administrative Burden, reduces cost and increases efficiency. As to the relational impact of IT in HRS,it provides remote access to the people inside and outside of the organization with increased connectivity and enhanced services. There is zero paper work involvement and activities within HRS are more process based rather than person based. All the ISMS guidelines for procedures are available to each employee on the company server and in case of any change they are readily notified. The recruitment procedure is though very transparent and ensures equal employment opportunity as per ISMS procedures as yet but it is recommended that the company follows the new setoffs trends to ensure a pool of more specialized and talented potential candidates. These are: Linked is a very popular online recruitment pool and allows employers to post Jobs, receive application, recognize and search for ideal candidates. Twitter: It enable employers to get the word out qui ckly when they are looking to hire. It allows to manage company’s image successfully, an important consideration for new hires. Video assessment tool: This tool takes the photo on a resume to the next level. It allows firms to preview shortlist candidates ahead of the interview process. This tool is meant to save time for employer. Applicant Tracking Software: It allows employers to filter applicants based on their suitability for the position advertised. IV. Conclusion: Being cost-efficient in providing quality services through professional and talented work force is every company’s core mission and vision. Information Technology and web portals plays a requisite role in order to achieve the same. Eventually, the implementation of the innovative technology makes company the best to do business with and to do work for. We will write a custom essay sample on Role of IT in HRM Essay Example specifically for you for only $16.38 $13.9/page Order now We will write a custom essay sample on Role of IT in HRM Essay Example specifically for you FOR ONLY $16.38 $13.9/page Hire Writer We will write a custom essay sample on Role of IT in HRM Essay Example specifically for you FOR ONLY $16.38 $13.9/page Hire Writer